## Set-Valued Tableaux: *q*-Enumeration and Catalan Combinatorics

Alexander Lazar

Université Libre de Bruxelles

July 4, 2023

Joint with Sam Hopkins (Howard University) and Svante Linusson (KTH)

Let  $\lambda \vdash n$ .

 $\mathcal{SYT}(\lambda) = \{ \mathsf{SYT} \text{ of shape } \lambda \}.$ 

 $\# SYT(\lambda)$  is given by the <u>hook-length formula</u>:

Let  $\lambda \vdash n$ .

 $\mathcal{SYT}(\lambda) = \{ \mathsf{SYT} \text{ of shape } \lambda \}.$ 

 $\# SYT(\lambda)$  is given by the <u>hook-length formula</u>:

Theorem (Frame–Robinson–Thrall)

$$\# SYT(\lambda) = n! \cdot \prod_{u \in \lambda} \frac{1}{h(u)},$$

where h(u) is the <u>hook-length</u> of the cell u.

| 1 | 3 | 4 | 5 | 7 |
|---|---|---|---|---|
| 2 | 6 | 8 |   |   |
| 9 |   |   | - |   |

<u>Natural descent of T is an *i* s.t. i + 1 occurs in a **higher** row of T (not the usual definition of descents for SYT).</u>

Natural descent of T is an *i* s.t. i + 1 occurs in a higher row of T (not the usual definition of descents for SYT).

 $D(T) = \{ \text{natural descents of } T \}, \text{ and } \operatorname{comaj}(T) = \sum_{i \in D(T)} (n - i).$ 

| 1 | 3 | 4 | 5 | 7 |
|---|---|---|---|---|
| 2 | 6 | 8 |   |   |
| 9 |   |   |   |   |

Natural descent of T is an *i* s.t. i + 1 occurs in a higher row of T (not the usual definition of descents for SYT).

 $D(T) = \{ \text{natural descents of } T \}, \text{ and } \operatorname{comaj}(T) = \sum_{i \in D(T)} (n-i).$ 

| 1 | 3 | 4 | 5 | 7 |
|---|---|---|---|---|
| 2 | 6 | 8 |   |   |
| 9 |   |   |   |   |

Stanley's hook-content formula implies:

$$\sum_{T \in SYT(\lambda)} q^{\operatorname{comaj}(T)} = [n]_q! \prod_{u \in \lambda} \frac{1}{[h(u)]_q},$$
  
where  $[a]_q = 1 + q + \dots + q^{a-1}$  and  $[a]_q! = [a]_q[a-1]_q \dots [1]_q.$ 

3/19

<u>Plane partition of  $\lambda$ </u>: filling of the Young diagram of  $\lambda$  with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of  $\lambda$ : filling of the Young diagram of  $\lambda$  with pos. integers that is weakly increasing along rows and columns.

<u>Plane partition of  $\lambda$ </u>: filling of the Young diagram of  $\lambda$  with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of  $\lambda$ : filling of the Young diagram of  $\lambda$  with pos. integers that is weakly increasing along rows and columns.



<u>Plane partition of  $\lambda$ </u>: filling of the Young diagram of  $\lambda$  with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of  $\lambda$ : filling of the Young diagram of  $\lambda$  with pos. integers that is weakly increasing along rows and columns.



 $\mathcal{PP}_m(\lambda) = \{ \text{plane partitions of } \lambda \text{ with largest entry } \leq m \}.$ 

 $\mathcal{RPP}_m(\lambda) = \{\text{reverse plane partitions of } \lambda \text{ with largest entry } \leq m\}.$ 

If  $\pi$  is a plane partition,  $|\pi|$  is the sum of the entries of  $\pi$ .

If  $\pi$  is a plane partition,  $|\pi|$  is the sum of the entries of  $\pi$ .

MacMahon: product formula for the size generating function of  $\mathcal{PP}_m$  when  $\lambda$  is the  $a \times b$  rectangle:

If  $\pi$  is a plane partition,  $|\pi|$  is the sum of the entries of  $\pi$ .

MacMahon: product formula for the size generating function of  $\mathcal{PP}_m$  when  $\lambda$  is the  $a \times b$  rectangle:

#### Theorem (MacMahon)

$$\sum_{\pi \in \mathcal{PP}_m(a \times b)} q^{|\pi|} = \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_q}{[i+j-1]_q}.$$

Set-valued filling of  $\lambda$ : an assignment of a nonempty set of positive integers to each cell of  $\lambda$ .



Set-valued filling of  $\lambda$ : an assignment of a nonempty set of positive integers to each cell of  $\lambda$ .

Standard set-valued Young tableau: a filling of  $\lambda$  with disjoint nonempty subsets of [n + k] s.t.



Set-valued filling of  $\lambda$ : an assignment of a nonempty set of positive integers to each cell of  $\lambda$ .

Standard set-valued Young tableau: a filling of  $\lambda$  with disjoint nonempty subsets of [n + k] s.t.

• Each element of [n + k] appears in exactly one cell.

Set-valued filling of  $\lambda$ : an assignment of a nonempty set of positive integers to each cell of  $\lambda$ .

Standard set-valued Young tableau: a filling of  $\lambda$  with disjoint nonempty subsets of [n + k] s.t.

- Each element of [n + k] appears in exactly one cell.
- The fill is strictly increasing along rows and columns, i.e. each entry of a cell is smaller than everything below it and to its right.

Set-valued filling of  $\lambda$ : an assignment of a nonempty set of positive integers to each cell of  $\lambda$ .

Standard set-valued Young tableau: a filling of  $\lambda$  with disjoint nonempty subsets of [n + k] s.t.

- Each element of [n + k] appears in exactly one cell.
- The fill is strictly increasing along rows and columns, i.e. each entry of a cell is smaller than everything below it and to its right.

| 1,2 | 3, 5, 6 | 11 |
|-----|---------|----|
| 4,7 | 8,9,10  |    |

Idea: SYT of shape  $\lambda$  with k additional entries.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.

 $SYT^{+k}(\lambda) = \{ \text{set-valued SYT of } \lambda \text{ with } k \text{ additional entries} \}.$ 

 $\mathcal{PP}_m^{+k}(\lambda)$  and  $\mathcal{RPP}_m^{+k}(\lambda)$  defined similarly.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.

 $SYT^{+k}(\lambda) = \{ \text{set-valued SYT of } \lambda \text{ with } k \text{ additional entries} \}.$ 

 $\mathcal{PP}_m^{+k}(\lambda)$  and  $\mathcal{RPP}_m^{+k}(\lambda)$  defined similarly.

When k = 1, fillings are barely set-valued.

#### Theorem (Hopkins–L.–Linusson)

$$\sum_{S \in S \mathcal{Y} \mathcal{T}^{+1}(a \times b)} q^{\operatorname{comaj}^{+1}(S)} = \frac{[a]_q[b]_q}{[a+b]_q} [ab+1]_q \prod_{i=0}^{a-1} \frac{[i]_q!}{[b+i]_q!},$$

#### Theorem (Hopkins–L.–Linusson)

$$\sum_{S \in S \mathcal{Y} \mathcal{T}^{+1}(a \times b)} q^{\operatorname{comaj}^{+1}(S)} = \frac{[a]_q[b]_q}{[a+b]_q} [ab+1]_q \prod_{i=0}^{a-1} \frac{[i]_q!}{[b+i]_q!},$$
  

$$\sum_{\tau \in \mathcal{R} \mathcal{P} \mathcal{P}_m^{+1}(a \times b)} q^{|\tau|-1} = \frac{[a]_q[b]_q}{[a+b]_q} [m]_q \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_q}{[i+j-1]_q}.$$

#### Theorem (Hopkins-L.-Linusson)

$$\sum_{S \in S \mathcal{YT}^{+1}(a \times b)} q^{\operatorname{comaj}^{+1}(S)} = \frac{[a]_q[b]_q}{[a+b]_q} [ab+1]_q \prod_{i=0}^{a-1} \frac{[i]_q!}{[b+i]_q!},$$
  
$$\sum_{\tau \in \mathcal{RPP}_m^{+1}(a \times b)} q^{|\tau|-1} = \frac{[a]_q[b]_q}{[a+b]_q} [m]_q \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_q}{[i+j-1]_q}.$$

 $comaj^{+1} = slightly intricate statistic.$ 

The q = 1 version of (1) was proven by Chan, López Martín, Pflueger, and Teixidor i Bigas. (2) is a barely set-valued version of MacMahon's formula.

#### Theorem (Hopkins-L.-Linusson)

$$\sum_{S \in S \mathcal{YT}^{+1}(a \times b)} q^{\operatorname{comaj}^{+1}(S)} = \frac{[a]_q[b]_q}{[a+b]_q} [ab+1]_q \prod_{i=0}^{a-1} \frac{[i]_q!}{[b+i]_q!},$$
  
$$\sum_{\tau \in \mathcal{RPP}_m^{+1}(a \times b)} q^{|\tau|-1} = \frac{[a]_q[b]_q}{[a+b]_q} [m]_q \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_q}{[i+j-1]_q}.$$

 $comaj^{+1} = slightly intricate statistic.$ 

The q = 1 version of (1) was proven by Chan, López Martín, Pflueger, and Teixidor i Bigas. (2) is a barely set-valued version of MacMahon's formula.

(1) is the  $m \to \infty$  limit of (2).

## $\operatorname{comaj}^{+k}$

Let  $T \in SYT^{+k}(\lambda)$ ,  $T^*$  the filling of  $\lambda$  with only the minimal elt of each cell, and  $d_1, \ldots, d_k$  the k additional elements.

## $|\text{comaj}^{+k}|$

Let  $T \in SYT^{+k}(\lambda)$ ,  $T^*$  the filling of  $\lambda$  with only the minimal elt of each cell, and  $d_1, \ldots, d_k$  the k additional elements.

 $T^*$  breaks up into skew shapes  $S_1, \ldots, S_{k+1}$ , each consisting of the cells filled with the numbers  $d_i + 1, \ldots, d_{i+1} - 1$ .

## $\operatorname{comaj}^{+k}$

Let  $T \in SYT^{+k}(\lambda)$ ,  $T^*$  the filling of  $\lambda$  with only the minimal elt of each cell, and  $d_1, \ldots, d_k$  the k additional elements.

 $T^*$  breaks up into skew shapes  $S_1, \ldots, S_{k+1}$ , each consisting of the cells filled with the numbers  $d_i + 1, \ldots, d_{i+1} - 1$ .



## $|\text{comaj}^{+k}|$

Let  $T \in SYT^{+k}(\lambda)$ ,  $T^*$  the filling of  $\lambda$  with only the minimal elt of each cell, and  $d_1, \ldots, d_k$  the k additional elements.

 $T^*$  breaks up into skew shapes  $S_1, \ldots, S_{k+1}$ , each consisting of the cells filled with the numbers  $d_i + 1, \ldots, d_{i+1} - 1$ .



 $\mathrm{D}^{+k}(T) \coloneqq \bigsqcup \mathrm{D}(S_i) \cup \{d_1, \dots, d_k\}$  $\mathrm{comaj}^{+k}(T) \coloneqq \sum_{i \in \mathrm{D}^{+k}(T)} n + k - i$ 

| S                        | 1 2<br>3 4,5 | 1 3<br>2 4,5 | 1 2<br>3,4 5 | 1 3<br>2,4 5 | 1 4<br>2,3 5 |
|--------------------------|--------------|--------------|--------------|--------------|--------------|
| $\mathrm{D}^{+1}(S)$     | {5}          | $\{2, 5\}$   | {4}          | {2,4}        | {3}          |
| $\mathrm{comaj}^{+1}(S)$ | 0            | 3            | 1            | 4            | 2            |

| S                                  | 1 2,3<br>4 5 | 1 2,4<br>3 5 | 1 3,4<br>2 5 | 1,2 3<br>4 5 | 1,2 4<br>3 5 |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|
| D <sup>+1</sup> (S)                | {3}          | {4}          | {2,4}        | {2}          | {2,3}        |
| comaj <sup>+1</sup> ( <i>S</i> ) 2 |              | 1            | 4            | 3            | 5            |

Use the framework of probability theory:

• Carefully define probability distributions  $\mu_{\leq,m}^q$ ,  $\mu_{lin}^q$  and a random variable ddeg on  $\mathcal{J}(P)$ .

- Carefully define probability distributions  $\mu_{\leq,m}^q$ ,  $\mu_{lin}^q$  and a random variable ddeg on  $\mathcal{J}(P)$ .
- Show that these distributions are suitably "nice".

- Carefully define probability distributions  $\mu_{\leq,m}^q$ ,  $\mu_{\ln}^q$  and a random variable ddeg on  $\mathcal{J}(P)$ .
- Show that these distributions are suitably "nice".
- Compute  $\mathbb{E}_{\mu_{\leq,m}^q}(\operatorname{ddeg})$  and  $\mathbb{E}_{\mu_{\operatorname{lin}}^q}(\operatorname{ddeg})$  in two different ways.

- Carefully define probability distributions  $\mu_{\leq,m}^q$ ,  $\mu_{lin}^q$  and a random variable ddeg on  $\mathcal{J}(P)$ .
- Show that these distributions are suitably "nice".
- Compute  $\mathbb{E}_{\mu^q_{\leq,m}}(\operatorname{ddeg})$  and  $\mathbb{E}_{\mu^q_{\operatorname{lin}}}(\operatorname{ddeg})$  in two different ways.
- Specialize these results to obtain our theorem.

<u>Up to now:</u> Study  $SYT^{+k}$  for fixed k and let total number of entries vary. Question: What about fixing total number of entries and letting k vary? <u>Up to now</u>: Study  $SYT^{+k}$  for fixed k and let total number of entries vary.

Question: What about fixing total number of entries and letting k vary?

Theorem (L.–Linusson) For all  $n \ge 2$  $\left| \bigsqcup_{2b+k=n} SYT^{+k}(2 \times b) \right| = \operatorname{Cat}(n-1),$ 

the n – 1st Catalan number.

#### Theorem (L.–Linusson)

 $\bigsqcup_{2b+k=n} SYT^{+k}(2 \times b) \leftrightarrow 321 - avoiding \ permutations \ of \ [n-1]$ 

• Elements of top row  $\leftrightarrow$  right-to-left minima

#### Theorem (L.–Linusson)

 $\bigsqcup_{2b+k=n} SYT^{+k}(2 \times b) \leftrightarrow 321 - avoiding \ permutations \ of \ [n-1]$ 

• Elements of top row  $\leftrightarrow$  right-to-left minima

• #columns = #{inner valleys} - 1  
• 
$$\left| \bigsqcup_{\substack{2b+k=n\\m \text{ elts in top row}}} SYT^{+k}(2 \times b) \right| = \frac{1}{m} \binom{n-1}{m-1} \binom{n-2}{m-1}$$

Bicolored Motzkin Path: Lattice path from (0,0) to (n,0) using steps  $\nearrow$ ,  $\searrow$ ,  $\rightarrow$ . Steps  $\rightarrow$  can be colored red or blue.



#{Bicolored Motzkin paths of length n} = Cat(n + 1) (bijection with Dyck paths of length 2n + 2)

 $Motz^*(n)$ : Bicolored Motzkin paths with two restrictions:

- No red steps on y = 0
- 2 No blue steps before first down step.

 $Motz^*(n)$ : Bicolored Motzkin paths with two restrictions:

- **1** No red steps on y = 0
- 2 No blue steps before first down step.

Theorem (L.–Linusson)

$$\bigsqcup_{2\times b+k=n} \mathcal{SYT}^{+k}(2\times b) \leftrightarrow \mathrm{Motz}^*(n),$$

consequently

$$|Motz^*(n)| = Cat(n-1).$$

 $Motz^*(n)$ : Bicolored Motzkin paths with two restrictions:

- **1** No red steps on y = 0
- 2 No blue steps before first down step.

Theorem (L.–Linusson)

$$\bigsqcup_{2\times b+k=n} \mathcal{SYT}^{+k}(2\times b) \leftrightarrow \mathrm{Motz}^*(n),$$

consequently

$$|Motz^*(n)| = Cat(n-1).$$

Can also show that  $\#{Motz(n) \text{ with restriction } (1)} = Cat(n)$ .

 $Motz^*(n)$ : Bicolored Motzkin paths with two restrictions:

- **1** No red steps on y = 0
- 2 No blue steps before first down step.

Theorem (L.–Linusson)

$$\bigsqcup_{2\times b+k=n} \mathcal{SYT}^{+k}(2\times b) \leftrightarrow \mathrm{Motz}^*(n),$$

consequently

$$|Motz^*(n)| = Cat(n-1).$$

Can also show that  $\#{Motz(n) with restriction (1)} = Cat(n)$ .

Consequence: Surprising combinatorial witness of

$$\operatorname{Cat}(n-1) \leq \operatorname{Cat}(n) \leq \operatorname{Cat}(n+1)$$

Q: What about bicolored restricted Motzkin paths that end at (n, i)?

<u>Q</u>: What about bicolored restricted Motzkin paths that end at (n, i)?

Theorem (L.–Linusson)

For all  $0 \leq i \leq n$ ,

$$|\operatorname{Motz}^*(n,i)| = \binom{2n-2}{n-i-1} - \binom{2n-2}{n-i-2} + \binom{n-2}{n-i}.$$

Equivalently,

$$\left|\bigsqcup_{2b+k-i=n} \mathcal{SYT}^{+k}(b,b-i)\right| = \binom{2n-2}{n-i-1} - \binom{2n-2}{n-i-2} + \binom{n-2}{n-i}.$$

Compare with the <u>ballot numbers</u>  $\binom{p+q}{q} - \binom{p+q}{q-1}$ .

| 8   |   |   |   |   |   |    |    |     | 1    |
|-----|---|---|---|---|---|----|----|-----|------|
| 7   |   |   |   |   |   |    |    | 1   | 7    |
| 6   |   |   |   |   |   |    | 1  | 6   | 28   |
| 5   |   |   |   |   |   | 1  | 5  | 21  | 97   |
| 4   |   |   |   |   | 1 | 4  | 15 | 64  | 288  |
| 3   |   |   |   | 1 | 3 | 10 | 39 | 159 | 643  |
| 2   |   |   | 1 | 2 | 6 | 21 | 76 | 276 | 1002 |
| 1   |   | 1 | 1 | 3 | 9 | 28 | 90 | 297 | 1001 |
| 0   | 1 | 0 | 1 | 2 | 5 | 14 | 42 | 132 | 429  |
| i/n | 0 | 1 | 2 | 3 | 4 | 5  | 6  | 7   | 8    |

Current work:

$$\sum_{2b+k=n} \left( \sum_{T \in S \mathcal{Y} \mathcal{T}^{+k}(2 \times b)} q^{\operatorname{comaj}^{+k}(T)} \right) = ???$$

#### Current work:

$$\sum_{2b+k=n} \left( \sum_{T \in S \mathcal{Y} \mathcal{T}^{+k}(2 \times b)} q^{\operatorname{comaj}^{+k}(T)} \right) = ???$$

This is a *q*-analog of the Catalan numbers. It seems to be new!

Question: Is there a nicer formula for it?

Determinantal formulas known for  $|SYT^{+k}(a \times b)|$ , but the naive *q*-analogs **don't seem to work**.

q-ification



q-ification



# Thank you! Merci beaucoup!

Let P be a finite poset, q > 0. For  $p \in P$  the toggle statistics are

$$\mathcal{T}_p^+(I) = \begin{cases} 1, & I \cup \{p\} \in \mathcal{J}(P) \\ 0 & \text{else} \end{cases} \qquad \mathcal{T}_p^-(I) = \begin{cases} 1, & p \in \max(I) \\ 0 & \text{else} \end{cases}$$

Let P be a finite poset, q > 0. For  $p \in P$  the toggle statistics are

$$\mathcal{T}_p^+(I) = \begin{cases} 1, & I \cup \{p\} \in \mathcal{J}(P) \\ 0 & \text{else} \end{cases} \qquad \mathcal{T}_p^-(I) = \begin{cases} 1, & p \in \max(I) \\ 0 & \text{else} \end{cases}$$

The <u>q-togglability statistic</u> is  $\mathcal{T}_p^q \coloneqq \mathcal{T}_p^+ - q\mathcal{T}_p^-$ .

Let P be a finite poset, q > 0. For  $p \in P$  the toggle statistics are

$$\mathcal{T}_p^+(I) = \begin{cases} 1, & I \cup \{p\} \in \mathcal{J}(P) \\ 0 & \text{else} \end{cases} \qquad \mathcal{T}_p^-(I) = \begin{cases} 1, & p \in \max(I) \\ 0 & \text{else} \end{cases}$$

The <u>*q*-togglability statistic</u> is  $\mathcal{T}_p^q \coloneqq \mathcal{T}_p^+ - q\mathcal{T}_p^-$ .

|   | • | • |
|---|---|---|
| • | • |   |
| • |   |   |

Let P be a finite poset, q > 0. For  $p \in P$  the toggle statistics are

$$\mathcal{T}_p^+(I) = \begin{cases} 1, & I \cup \{p\} \in \mathcal{J}(P) \\ 0 & \text{else} \end{cases} \qquad \mathcal{T}_p^-(I) = \begin{cases} 1, & p \in \max(I) \\ 0 & \text{else} \end{cases}$$

The <u>*q*-togglability statistic</u> is  $\mathcal{T}_p^q \coloneqq \mathcal{T}_p^+ - q\mathcal{T}_p^-$ .

|   | • | • |
|---|---|---|
| • | • |   |
| • |   |   |

 $\mu$  is <u>*q*-toggle-symmetric</u> if  $\mathbb{E}_{\mu}(\mathcal{T}_{p}^{q}) = 0$  for all p, that is, we are q times as likely to toggle a p out of a random  $I \in \mathcal{J}(P)$  as we are to toggle p into a random  $I \in \mathcal{J}(P)$ .