Set-Valued Tableaux: q-Enumeration and Catalan Combinatorics

Alexander Lazar

Université Libre de Bruxelles

$$
\text { July 4, } 2023
$$

Joint with Sam Hopkins (Howard University) and Svante Linusson (KTH)

Preliminaries: Standard Young Tableaux

Let $\lambda \vdash n$.
$\mathcal{S Y T}(\lambda)=\{$ SYT of shape $\lambda\}$.
$\# \mathcal{S Y} \mathcal{T}(\lambda)$ is given by the hook-length formula:

Preliminaries: Standard Young Tableaux

Let $\lambda \vdash n$.
$\mathcal{S Y T}(\lambda)=\{$ SYT of shape $\lambda\}$.
$\# \mathcal{S Y} \mathcal{T}(\lambda)$ is given by the hook-length formula:
Theorem (Frame-Robinson-Thrall)

$$
\# \mathcal{S Y} \mathcal{T}(\lambda)=n!\cdot \prod_{u \in \lambda} \frac{1}{h(u)}
$$

where $h(u)$ is the hook-length of the cell u.

1	3	4	5	7
2	6	8		
9				

Preliminaries: Standard Young Tableaux

Natural descent of T is an i s.t. $i+1$ occurs in a higher row of T (not the usual definition of descents for SYT).

Preliminaries: Standard Young Tableaux

Natural descent of T is an i s.t. $i+1$ occurs in a higher row of T (not the usual definition of descents for SYT).
$\mathrm{D}(T)=\{$ natural descents of $T\}$, and $\operatorname{comaj}(T)=\sum_{i \in \mathrm{D}(T)}(n-i)$.

1	3	4	5	7
2	6	8		
9				

Preliminaries: Standard Young Tableaux

Natural descent of T is an i s.t. $i+1$ occurs in a higher row of T (not the usual definition of descents for SYT).
$\mathrm{D}(T)=\{$ natural descents of $T\}$, and $\operatorname{comaj}(T)=\sum_{i \in \mathrm{D}(T)}(n-i)$.

1	3	4	5	7	
2	6	8			
9					

Stanley's hook-content formula implies:

$$
\sum_{T \in \mathcal{S Y Y}(\lambda)} q^{\operatorname{comaj}(T)}=[n]_{q}!\prod_{u \in \lambda} \frac{1}{[h(u)]_{q}},
$$

where $[a]_{q}=1+q+\cdots+q^{a-1}$ and $[a]_{q}!=[a]_{q}[a-1]_{q} \cdots[1]_{q}$.

Preliminaries: (Reverse) Plane Partitions

Plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly increasing along rows and columns.

Preliminaries: (Reverse) Plane Partitions

Plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly increasing along rows and columns.

6	6	5
6	4	
1		

1	1	2
3	4	
3		

Preliminaries: (Reverse) Plane Partitions

Plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly decreasing along rows and columns.

Reverse plane partition of λ : filling of the Young diagram of λ with pos. integers that is weakly increasing along rows and columns.

6	6	5
6	4	
1		

1	1	2
3	4	
3		

$\mathcal{P} \mathcal{P}_{m}(\lambda)=\{$ plane partitions of λ with largest entry $\leq m\}$.
$\mathcal{R} \mathcal{P} \mathcal{P}_{m}(\lambda)=\{$ reverse plane partitions of λ with largest entry $\leq m\}$.

Preliminaries: (Reverse) Plane Partitions

If π is a plane partition, $|\pi|$ is the sum of the entries of π.

Preliminaries: (Reverse) Plane Partitions

If π is a plane partition, $|\pi|$ is the sum of the entries of π.
MacMahon: product formula for the size generating function of $\mathcal{P} \mathcal{P}_{m}$ when λ is the $a \times b$ rectangle:

Preliminaries: (Reverse) Plane Partitions

If π is a plane partition, $|\pi|$ is the sum of the entries of π.
MacMahon: product formula for the size generating function of $\mathcal{P} \mathcal{P}_{m}$ when λ is the $a \times b$ rectangle:

Theorem (MacMahon)

$$
\sum_{\pi \in \mathcal{P} \mathcal{P}_{m}(a \times b)} q^{|\pi|}=\prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_{q}}{[i+j-1]_{q}}
$$

Preliminaries: Set-Valued Fillings

Set-valued filling of λ : an assignment of a nonempty set of positive integers to each cell of λ.

Preliminaries: Set-Valued Fillings

Set-valued filling of λ : an assignment of a nonempty set of positive integers to each cell of λ.

Standard set-valued Young tableau: a filling of λ with disjoint nonempty subsets of $[n+k]$ s.t.

Preliminaries: Set-Valued Fillings

Set-valued filling of λ : an assignment of a nonempty set of positive integers to each cell of λ.

Standard set-valued Young tableau: a filling of λ with disjoint nonempty subsets of $[n+k]$ s.t.

- Each element of $[n+k]$ appears in exactly one cell.

Preliminaries: Set-Valued Fillings

Set-valued filling of λ : an assignment of a nonempty set of positive integers to each cell of λ.

Standard set-valued Young tableau: a filling of λ with disjoint nonempty subsets of $[n+k]$ s.t.

- Each element of $[n+k]$ appears in exactly one cell.
- The fill is strictly increasing along rows and columns, i.e. each entry of a cell is smaller than everything below it and to its right.

Preliminaries: Set-Valued Fillings

Set-valued filling of λ : an assignment of a nonempty set of positive integers to each cell of λ.

Standard set-valued Young tableau: a filling of λ with disjoint nonempty subsets of $[n+k]$ s.t.

- Each element of $[n+k]$ appears in exactly one cell.
- The fill is strictly increasing along rows and columns, i.e. each entry of a cell is smaller than everything below it and to its right.

1,2	$3,5,6$	11
4,7	$8,9,10$	

Idea: SYT of shape λ with k additional entries.

Preliminaries: Set-Valued Fillings

Set-valued SYT introduced by Buch in the context of algebraic geometry (K-theory of the Grassmannian). Also arise in Brill-Noether theory.

Preliminaries: Set-Valued Fillings

Set-valued SYT introduced by Buch in the context of algebraic geometry (K-theory of the Grassmannian). Also arise in Brill-Noether theory.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.

Preliminaries: Set-Valued Fillings

Set-valued SYT introduced by Buch in the context of algebraic geometry (K-theory of the Grassmannian). Also arise in Brill-Noether theory.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.
$\mathcal{S Y} \mathcal{T}^{+k}(\lambda)=\{$ set-valued SYT of λ with k additional entries $\}$.
$\mathcal{P} \mathcal{P}_{m}^{+k}(\lambda)$ and $\mathcal{R} \mathcal{P} \mathcal{P}_{m}^{+k}(\lambda)$ defined similarly.

Preliminaries: Set-Valued Fillings

Set-valued SYT introduced by Buch in the context of algebraic geometry (K-theory of the Grassmannian). Also arise in Brill-Noether theory.

Set-valued (reverse) plane partitions introduced by Lam and Pylyavksyy: entries can appear in multiple cells, and we just require weak increasing/decreasing along rows and columns.
$\mathcal{S Y} \mathcal{T}^{+k}(\lambda)=\{$ set-valued SYT of λ with k additional entries $\}$.
$\mathcal{P} \mathcal{P}_{m}^{+k}(\lambda)$ and $\mathcal{R} \mathcal{P} \mathcal{P}_{m}^{+k}(\lambda)$ defined similarly.
When $k=1$, fillings are barely set-valued.

q-Counting BSV Objects

Theorem (Hopkins-L.-Linusson)
(1) $\sum_{S \in \mathcal{S} \mathcal{T}^{+1}(a \times b)} q^{\text {comaj }^{+1}(S)}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[a b+1]_{q} \prod_{i=0}^{a-1} \frac{[i]_{q}!}{[b+i]_{q} \text { ! }}$,

q-Counting BSV Objects

Theorem (Hopkins-L.-Linusson)
(1) $\sum_{S \in \mathcal{S Y} \mathcal{T}^{+1}(a \times b)} q^{\mathrm{comaj}^{+1}(S)}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[a b+1]_{q} \prod_{i=0}^{a-1} \frac{[i]_{q}!}{[b+i]_{q}!}$,
(2) $\sum_{\tau \in \mathcal{R P P}_{m}^{+1}(a \times b)} q^{|\tau|-1}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[m]_{q} \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_{q}}{[i+j-1]_{q}}$.

q-Counting BSV Objects

Theorem (Hopkins-L.-Linusson)

(1) $\sum_{S \in \mathcal{S} \mathcal{Y T}^{+1}(a \times b)} q^{\mathrm{comaj}^{+1}(S)}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[a b+1]_{q} \prod_{i=0}^{a-1} \frac{[i]_{q}!}{[b+i]_{q}!}$,
(2) $\sum_{\tau \in \mathcal{R} \mathcal{P P}_{m}^{+1}(a \times b)} q^{|\tau|-1}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[m]_{q} \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_{q}}{[i+j-1]_{q}}$.
comaj $^{+1}=$ slightly intricate statistic.
The $q=1$ version of (1) was proven by Chan, López Martín, Pflueger, and Teixidor i Bigas. (2) is a barely set-valued version of MacMahon's formula.

q-Counting BSV Objects

Theorem (Hopkins-L.-Linusson)

(1) $\sum_{S \in \mathcal{S Y \mathcal { T } ^ { + 1 } (a \times b)}} q^{\mathrm{comaj}^{+1}(S)}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[a b+1]_{q} \prod_{i=0}^{a-1} \frac{[i]_{q}!}{[b+i]_{q}!}$,
(2) $\sum_{\tau \in \mathcal{R} \mathcal{P P}_{m}^{+1}(a \times b)} q^{|\tau|-1}=\frac{[a]_{q}[b]_{q}}{[a+b]_{q}}[m]_{q} \prod_{i=1}^{a} \prod_{j=1}^{b} \frac{[i+j+m-1]_{q}}{[i+j-1]_{q}}$.
comaj $^{+1}=$ slightly intricate statistic.
The $q=1$ version of (1) was proven by Chan, López Martín, Pflueger, and Teixidor i Bigas. (2) is a barely set-valued version of MacMahon's formula.
(1) is the $m \rightarrow \infty$ limit of (2).

$\operatorname{comaj}^{+k}$

Let $T \in \mathcal{S Y} \mathcal{T}^{+k}(\lambda), T^{*}$ the filling of λ with only the minimal elt of each cell, and d_{1}, \ldots, d_{k} the k additional elements.

$\operatorname{comaj}^{+k}$

Let $T \in \mathcal{S Y} \mathcal{T}^{+k}(\lambda), T^{*}$ the filling of λ with only the minimal elt of each cell, and d_{1}, \ldots, d_{k} the k additional elements.
T^{*} breaks up into skew shapes S_{1}, \ldots, S_{k+1}, each consisting of the cells filled with the numbers $d_{i}+1, \ldots, d_{i+1}-1$.

$\operatorname{comaj}^{+k}$

Let $T \in \mathcal{S Y} \mathcal{T}^{+k}(\lambda), T^{*}$ the filling of λ with only the minimal elt of each cell, and d_{1}, \ldots, d_{k} the k additional elements.
T^{*} breaks up into skew shapes S_{1}, \ldots, S_{k+1}, each consisting of the cells filled with the numbers $d_{i}+1, \ldots, d_{i+1}-1$.

1	2	4				
3	5,6	7				
8	9		\leftrightarrow	1	2	4
:---	:---	:---	:---	:---		
3	5			6		
:---	:---	:---		8	9	
:---	:---	:---				

$\operatorname{comaj}^{+k}$

Let $T \in \mathcal{S Y} \mathcal{T}^{+k}(\lambda), T^{*}$ the filling of λ with only the minimal elt of each cell, and d_{1}, \ldots, d_{k} the k additional elements.
T^{*} breaks up into skew shapes S_{1}, \ldots, S_{k+1}, each consisting of the cells filled with the numbers $d_{i}+1, \ldots, d_{i+1}-1$.

1	2	4				
3	5,6	7				
8	9		\leftrightarrow	1	2	4
:---	:---	:---	:---	:---		
3	5			6		
:---	:---	:---		8	9	
:---	:---	:---				

$$
\begin{aligned}
& \mathrm{D}^{+k}(T):=\bigsqcup \mathrm{D}\left(S_{i}\right) \cup\left\{d_{1}, \ldots, d_{k}\right\} \\
& \operatorname{comaj}^{+k}(T):=\sum_{i \in \mathrm{D}^{+k}(T)} n+k-i
\end{aligned}
$$

$\mathcal{S Y} \mathcal{T}^{+1}(2 \times 2)$

S	1 2 3 4,5	1 3 2 4,5	1 2 3,4 5	1 3 2,4 5	1 4 2,3 5
$\mathrm{D}^{+1}(S)$	\{5\}	\{2, 5\}	\{4\}	\{2, 4\}	\{3\}
comaj $^{+1}(S)$	0	3	1	4	2

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Use the framework of probability theory:

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Use the framework of probability theory:

- Carefully define probability distributions $\mu_{\leq, m}^{q}, \mu_{\text {lin }}^{q}$ and a random variable ddeg on $\mathcal{J}(P)$.

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Use the framework of probability theory:

- Carefully define probability distributions $\mu_{\leq, m}^{q}, \mu_{\text {lin }}^{q}$ and a random variable ddeg on $\mathcal{J}(P)$.
- Show that these distributions are suitably "nice".

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Use the framework of probability theory:

- Carefully define probability distributions $\mu_{\leq, m}^{q}, \mu_{\text {lin }}^{q}$ and a random variable ddeg on $\mathcal{J}(P)$.
- Show that these distributions are suitably "nice".
- Compute $\mathbb{E}_{\mu_{\leq, m}^{q}}(\mathrm{ddeg})$ and $\mathbb{E}_{\mu_{\text {lin }}^{q}}(\mathrm{ddeg})$ in two different ways.

Proof Outline

Proved on the level of arbitrary (finite) posets P and their sets of order ideals $\mathcal{J}(P)$.

Use the framework of probability theory:

- Carefully define probability distributions $\mu_{\leq, m}^{q}, \mu_{\text {lin }}^{q}$ and a random variable ddeg on $\mathcal{J}(P)$.
- Show that these distributions are suitably "nice".
- Compute $\mathbb{E}_{\mu_{\leq, m}^{q}}(\mathrm{ddeg})$ and $\mathbb{E}_{\mu_{\text {lin }}^{q}}($ ddeg $)$ in two different ways.
- Specialize these results to obtain our theorem.

Two Rows

Up to now: Study $\mathcal{S Y} \mathcal{T}^{+k}$ for fixed k and let total number of entries vary. Question: What about fixing total number of entries and letting k vary?

Two Rows

Up to now: Study $\mathcal{S Y} \mathcal{T}^{+k}$ for fixed k and let total number of entries vary.
Question: What about fixing total number of entries and letting k vary?
Theorem (L.-Linusson)
For all $n \geq 2$

$$
\left|\bigsqcup_{2 b+k=n} \mathcal{S Y T}^{+k}(2 \times b)\right|=\operatorname{Cat}(n-1)
$$

the $n-1$ st Catalan number.

Catalan ${ }^{+k}$ Combinatorics

Theorem (L.-Linusson)

$\bigsqcup_{2 b+k=n} \mathcal{S Y T}^{+k}(2 \times b) \leftrightarrow 321$ - avoiding permutations of $[n-1]$

- Elements of top row \leftrightarrow right-to-left minima
- $\#$ columns $=\#\{$ inner valleys $\}-1$

Catalan ${ }^{+k}$ Combinatorics

Theorem (L.-Linusson)

$$
\bigsqcup_{2 b+k=n} \mathcal{S Y} \mathcal{T}^{+k}(2 \times b) \leftrightarrow 321 \text { - avoiding permutations of }[n-1]
$$

- Elements of top row \leftrightarrow right-to-left minima
- \#columns $=\#\{$ inner valleys $\}-1$

Bicolored Motzkin Paths

Bicolored Motzkin Path: Lattice path from $(0,0)$ to $(n, 0)$ using steps $\nearrow, \searrow, \rightarrow$. Steps \rightarrow can be colored red or blue.

$\#\{$ Bicolored Motzkin paths of length $n\}=\operatorname{Cat}(n+1)$ (bijection with Dyck paths of length $2 n+2$)

Bicolored Motzkin Paths

Motz $^{*}(n)$: Bicolored Motzkin paths with two restrictions:
(1) No red steps on $y=0$
(2) No blue steps before first down step.

Bicolored Motzkin Paths

Motz $^{*}(n)$: Bicolored Motzkin paths with two restrictions:
(1) No red steps on $y=0$
(2) No blue steps before first down step.

Theorem (L.-Linusson)

$$
\bigsqcup_{* \times b+k=n} \mathcal{S Y}^{+k}(2 \times b) \leftrightarrow \operatorname{Motz}^{*}(n)
$$

consequently

$$
\left|\operatorname{Motz}^{*}(n)\right|=\operatorname{Cat}(n-1)
$$

Bicolored Motzkin Paths

Motz $^{*}(n)$: Bicolored Motzkin paths with two restrictions:
(1) No red steps on $y=0$
(2) No blue steps before first down step.

Theorem (L.-Linusson)

$$
\bigsqcup_{2 \times b+k=n} \mathcal{S Y}^{+k}(2 \times b) \leftrightarrow \operatorname{Motz}^{*}(n)
$$

consequently

$$
\left|\operatorname{Motz}^{*}(n)\right|=\operatorname{Cat}(n-1)
$$

Can also show that $\#\{\operatorname{Motz}(n)$ with restriction (1) $\}=\operatorname{Cat}(n)$.

Bicolored Motzkin Paths

Motz $^{*}(n)$: Bicolored Motzkin paths with two restrictions:
(1) No red steps on $y=0$
(2) No blue steps before first down step.

Theorem (L.-Linusson)

$$
\bigsqcup_{2 \times b+k=n} \mathcal{S Y}^{+k}(2 \times b) \leftrightarrow \operatorname{Motz}^{*}(n)
$$

consequently

$$
\left|\operatorname{Motz}^{*}(n)\right|=\operatorname{Cat}(n-1)
$$

Can also show that $\#\{\operatorname{Motz}(n)$ with restriction (1) $\}=\operatorname{Cat}(n)$.
Consequence: Surprising combinatorial witness of

$$
\operatorname{Cat}(n-1) \leq \operatorname{Cat}(n) \leq \operatorname{Cat}(n+1)
$$

Ballotlike Paths

Q: What about bicolored restricted Motzkin paths that end at (n, i) ?

Ballotlike Paths

Q: What about bicolored restricted Motzkin paths that end at (n, i) ?

Theorem (L.-Linusson)

For all $0 \leq i \leq n$,

$$
\left|\operatorname{Motz}^{*}(n, i)\right|=\binom{2 n-2}{n-i-1}-\binom{2 n-2}{n-i-2}+\binom{n-2}{n-i}
$$

Equivalently,

$$
\left|\bigsqcup_{2 b+k-i=n} \mathcal{S} \mathcal{Y} \mathcal{T}^{+k}(b, b-i)\right|=\binom{2 n-2}{n-i-1}-\binom{2 n-2}{n-i-2}+\binom{n-2}{n-i} .
$$

Compare with the ballot numbers $\binom{p+q}{q}-\binom{p+q}{q-1}$.

Ballotlike Paths

$\mathbf{8}$									1
$\mathbf{7}$								1	7
$\mathbf{6}$							1	6	28
$\mathbf{5}$						1	5	21	97
$\mathbf{4}$					1	4	15	64	288
$\mathbf{3}$				1	3	10	39	159	643
$\mathbf{2}$			1	2	6	21	76	276	1002
$\mathbf{1}$		1	1	3	9	28	90	297	1001
$\mathbf{0}$	1	0	1	2	5	14	42	132	429
$\mathbf{i} \mathbf{n}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$

q-ification

Current work:

$$
\sum_{2 b+k=n}\left(\sum_{T \in \mathcal{S} \mathcal{Y} \mathcal{T}^{+k}(2 \times b)} q^{\mathrm{comaj}^{+k}(T)}\right)=\text { ??? }
$$

q-ification

Current work:

$$
\sum_{2 b+k=n}\left(\sum_{T \in \mathcal{S Y} \mathcal{T}^{+k}(2 \times b)} q^{\operatorname{comaj}^{+k}(T)}\right)=\boldsymbol{? ? ?}
$$

This is a q-analog of the Catalan numbers. It seems to be new!
Question: Is there a nicer formula for it?
Determinantal formulas known for $\left|\mathcal{S Y} \mathcal{T}^{+k}(a \times b)\right|$, but the naive q-analogs don't seem to work.

q-ification

n	Our q Cat
1	0
2	1
3	$q+1$
4	$q^{3}+2 q^{2}+q+1$
5	$q^{6}+2 q^{5}+3 q^{4}+3 q^{3}+2 q^{2}+2 q+1$
6	$q^{10}+2 q^{9}+3 q^{8}+7 q^{7}+6 q^{6}+5 q^{5}+6 q^{4}+7 q^{3}+3 q^{2}+q+1$

q-ification

n	Our qCat
1	0
2	1
3	$q+1$
4	$q^{3}+2 q^{2}+q+1$
5	$q^{6}+2 q^{5}+3 q^{4}+3 q^{3}+2 q^{2}+2 q+1$
6	$q^{10}+2 q^{9}+3 q^{8}+7 q^{7}+6 q^{6}+5 q^{5}+6 q^{4}+7 q^{3}+3 q^{2}+q+1$

Thank you!

Merci beaucoup!

q-Toggle-Symmetry

Let P be a finite poset, $q>0$. For $p \in P$ the toggle statistics are

$$
\mathcal{T}_{p}^{+}(I)=\left\{\begin{array}{ll}
1, & I \cup\{p\} \in \mathcal{J}(P) \\
0 & \text { else }
\end{array} \quad \mathcal{T}_{p}^{-}(I)= \begin{cases}1, & p \in \max (I) \\
0 & \text { else }\end{cases}\right.
$$

q-Toggle-Symmetry

Let P be a finite poset, $q>0$. For $p \in P$ the toggle statistics are

$$
\mathcal{T}_{p}^{+}(I)=\left\{\begin{array}{ll}
1, & I \cup\{p\} \in \mathcal{J}(P) \\
0 & \text { else }
\end{array} \quad \mathcal{T}_{p}^{-}(I)= \begin{cases}1, & p \in \max (I) \\
0 & \text { else }\end{cases}\right.
$$

The $\underline{q \text {-togglability statistic }}$ is $\mathcal{T}_{p}^{q}:=\mathcal{T}_{p}^{+}-q \mathcal{T}_{p}^{-}$.

q-Toggle-Symmetry

Let P be a finite poset, $q>0$. For $p \in P$ the toggle statistics are

$$
\mathcal{T}_{p}^{+}(I)=\left\{\begin{array}{ll}
1, & I \cup\{p\} \in \mathcal{J}(P) \\
0 & \text { else }
\end{array} \quad \mathcal{T}_{p}^{-}(I)= \begin{cases}1, & p \in \max (I) \\
0 & \text { else }\end{cases}\right.
$$

The $\underline{q \text {-togglability statistic }}$ is $\mathcal{T}_{p}^{q}:=\mathcal{T}_{p}^{+}-q \mathcal{T}_{p}^{-}$.

q-Toggle-Symmetry

Let P be a finite poset, $q>0$. For $p \in P$ the toggle statistics are

$$
\mathcal{T}_{p}^{+}(I)=\left\{\begin{array}{ll}
1, & I \cup\{p\} \in \mathcal{J}(P) \\
0 & \text { else }
\end{array} \quad \mathcal{T}_{p}^{-}(I)= \begin{cases}1, & p \in \max (I) \\
0 & \text { else }\end{cases}\right.
$$

The $\underline{q \text {-togglability statistic }}$ is $\mathcal{T}_{p}^{q}:=\mathcal{T}_{p}^{+}-q \mathcal{T}_{p}^{-}$.

μ is q-toggle-symmetric if $\mathbb{E}_{\mu}\left(\mathcal{T}_{p}^{q}\right)=0$ for all p, that is, we are q times as likely to toggle a p out of a random $I \in \mathcal{J}(P)$ as we are to toggle p into a random $I \in \mathcal{J}(P)$.

